skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Catto, Michael_A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Supergenes underlying complex trait polymorphisms ensure that sets of coadapted alleles remain genetically linked. Despite their prevalence in nature, the mechanisms of supergene effects on genome regulation are poorly understood. In the fire ant Solenopsis invicta, a supergene containing over 500 individual genes influences trait variation in multiple castes to collectively underpin a colony level social polymorphism. Here, we present results of an integrative investigation of supergene effects on gene regulation. We present analyses of ATAC-seq data to investigate variation in chromatin accessibility by supergene genotype and STARR-seq data to characterize enhancer activity by supergene haplotype. Integration with gene co-expression analyses, newly mapped intact transposable elements (TEs), and previously identified copy number variants (CNVs) collectively reveals widespread effects of the supergene on chromatin structure, gene transcription, and regulatory element activity, with a genome-wide bias for open chromatin and increased expression in the presence of the derived supergene haplotype, particularly in regions that harbor intact TEs. Integrated consideration of CNVs and regulatory element divergence suggests each evolved in concert to shape the expression of supergene encoded factors, including several transcription factors that may directly contribute to the trans-regulatory footprint of a heteromorphic social chromosome. Overall, we show how genome structure in the form of a supergene has wide-reaching effects on gene regulation and gene expression. 
    more » « less
  2. Abstract Characterizing molecular underpinnings of plastic traits and balanced polymorphisms represent 2 important goals of evolutionary biology. Fire ant gynes (pre-reproductive queens) provide an ideal system to study potential links between these phenomena because they exhibit both supergene-mediated polymorphism and nutritional plasticity in weight and colony-founding behaviour. Gynes with the inversion supergene haplotype are lightweight and depend on existing workers to initiate reproduction. Gynes with only the ancestral, non-inverted gene arrangement accumulate more nutrient reserves as adults and, in a distinct colony-founding behaviour, initiate reproduction without help from workers. However, when such gynes overwinter in the natal nest they develop an environmentally induced lightweight phenotype and colony-founding behaviour, similar to gynes with the inversion haplotype that have not overwintered. To evaluate the extent of shared mechanisms between plasticity and balanced polymorphism in fire ant gyne traits, we assessed whether genes with expression variation linked to overwintering plasticity may be affected by the evolutionary divergence between supergene haplotypes. To do so, we first compared transcriptional profiles of brains and ovaries from overwintered and non-overwintered gynes to identify plasticity-associated genes. These genes were enriched for metabolic and behavioural functions. Next, we compared plasticity-associated genes to those differentially expressed by supergene genotype, revealing a significant overlap of the 2 sets in ovarian tissues. We also identified sequence substitutions between supergene variants of multiple plasticity-associated genes, consistent with a scenario in which an ancestrally plastic phenotype responsive to an environmental condition became increasingly genetically regulated. 
    more » « less
  3. Abstract Insects have evolved remarkably complex social systems. Social wasps are particularly noteworthy because they display gradations in social behaviors. Here, we sequence the genomes of two highly diverged Vespula wasps, V. squamosa and V. maculifrons Buysson (Hymenoptera: Vespidae), to gain greater insight into the evolution of sociality. Both V. squamosa and V. maculifrons are social wasps that live in large colonies characterized by distinct queen and worker castes. However, V. squamosa is a facultative social parasite, and V. maculifrons is its frequent host. We found that the genomes of both species were ~200 Mbp in size, similar to the genome sizes of congeneric species. Analyses of gene expression from members of different castes and developmental stages revealed similarities in expression patterns among immature life stages. We also found evidence of DNA methylation within the genome of both species by directly analyzing DNA sequence reads. Moreover, genes that were highly and uniformly expressed were also relatively highly methylated. We further uncovered evidence of differences in patterns of molecular evolution in the two taxa, consistent with V. squamosa exhibiting alterations in evolutionary pressures associated with its facultatively parasitic or polygyne life history. Finally, rates of gene evolution were correlated with variation in gene expression between castes and developmental stages, as expected if more highly expressed genes were subject to stronger levels of selection. Overall, this study expands our understanding of how social behavior relates to genome evolution in insects. 
    more » « less